Перевод: со всех языков на английский

с английского на все языки

A steam engine could not be made to produce work

  • 1 если бы не

    Were it not (or If it were not) for the radio there would be little point in sending satellites into space.

    * * *
    Если бы не -- but for; if not for; if it were not for; were it not for; had not (+ passive participle III), if were not
     However, it [the loss] would undoubtedly have been higher but for the longer gland.
     The flow of course would have been highly turbulent if not for the turbulence-reducing screens.
     The torsional frequencies predicted by the classical theory would be exactly the same if it were not for a small amount of coupling... (если бы не небольшое взаимодействие между различными формами колебаний)
     Were it not for the strain hardening of the material, the vessel would burst.

    Русско-английский научно-технический словарь переводчика > если бы не

  • 2 если бы не

    Were it not (or If it were not) for the radio there would be little point in sending satellites into space.

    Русско-английский научно-технический словарь переводчика > если бы не

  • 3 Smeaton, John

    [br]
    b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, England
    d. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England
    [br]
    English mechanical and civil engineer.
    [br]
    As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.
    In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.
    The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.
    On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.
    Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.
    [br]
    Principal Honours and Distinctions
    FRS 1753.
    Bibliography
    1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.
    Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.
    Further Reading
    S.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).
    LRD

    Biographical history of technology > Smeaton, John

  • 4 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 5 Macintosh, Charles

    [br]
    b. 29 December 1766 Glasgow, Scotland
    d. 25 July 1843 Dunchattan, near Glasgow, Scotland
    [br]
    Scottish inventor of rubberized waterproof clothing.
    [br]
    As the son of the well-known and inventive dyer George Macintosh, Charles had an early interest in chemistry. At the age of 19 he gave up his work as a clerk with a Glasgow merchant to manufacture sal ammoniac (ammonium chloride) and developed new processes in dyeing. In 1797 he started the first Scottish alum works, finding the alum in waste shale from coal mines. His first works was at Hurlet, Renfrewshire, and was followed later by others. He then formed a partnership with Charles Tennant, the proprietor of a chemical works at St Rollox, near Glasgow, and sold "lime bleaching liquor" made with chlorine and milk of lime from their bleach works at Darnley. A year later the use of dry lime to make bleaching powder, a process worked out by Macintosh, was patented. Macintosh remained associated with Tennant's St Rollox chemical works until 1814. During this time, in 1809, he had set up a yeast factory, but it failed because of opposition from the London brewers.
    There was a steady demand for the ammonia that gas works produced, but the tar was often looked upon as an inconvenient waste product. Macintosh bought all the ammonia and tar that the Glasgow works produced, using the ammonia in his establishment to produce cudbear, a dyestuff extracted from various lichens. Cudbear could be used with appropriate mordants to make shades from pink to blue. The tar could be distilled to produce naphtha, which was used as a flare. Macintosh also became interested in ironmaking. In 1825 he took out a patent for converting malleable iron into steel by taking it to white heat in a current of gas with a carbon content, such as coal gas. However, the process was not commercially successful because of the difficulty keeping the furnace gas-tight. In 1828 he assisted J.B. Neilson in bringing hot blast into use in blast furnaces; Neilson assigned Macintosh a share in the patent, which was of dubious benefit as it involved him in the tortuous litigation that surrounded the patent until 1843.
    In June 1823, as a result of experiments into the possible uses of naphtha obtained as a by-product of the distillation of coal tar, Macintosh patented his process for waterproofing fabric. This comprised dissolving rubber in naphtha and applying the solution to two pieces of cloth which were afterwards pressed together to form an impermeable compound fabric. After an experimental period in Glasgow, Macintosh commenced manufacture in Manchester, where he formed a partnership with H.H.Birley, B.Kirk and R.W.Barton. Birley was a cotton spinner and weaver and was looking for ways to extend the output of his cloth. He was amongst the first to light his mills with gas, so he shared a common interest with Macintosh.
    New buildings were erected for the production of waterproof cloth in 1824–5, but there were considerable teething troubles with the process, particularly in the spreading of the rubber solution onto the cloth. Peter Ewart helped to install the machinery, including a steam engine supplied by Boulton \& Watt, and the naphtha was supplied from Macintosh's works in Glasgow. It seems that the process was still giving difficulties when Thomas Hancock, the foremost rubber technologist of that time, became involved in 1830 and was made a partner in 1834. By 1836 the waterproof coat was being called a "mackintosh" [sic] and was gaining such popularity that the Manchester business was expanded with additional premises. Macintosh's business was gradually enlarged to include many other kinds of indiarubber products, such as rubber shoes and cushions.
    [br]
    Principal Honours and Distinctions
    FRS 1823.
    Further Reading
    G.Macintosh, 1847, Memoir of Charles Macintosh, London (the fullest account of Charles Macintosh's life).
    H.Schurer, 1953, "The macintosh: the paternity of an invention", Transactions of the Newcomen Society 28:77–87 (an account of the invention of the mackintosh).
    RLH / LRD

    Biographical history of technology > Macintosh, Charles

  • 6 Darby, Abraham

    SUBJECT AREA: Metallurgy
    [br]
    b. 1678 near Dudley, Worcestershire, England
    d. 5 May 1717 Madely Court, Coalbrookdale, Shropshire, England
    [br]
    English ironmaster, inventor of the coke smelting of iron ore.
    [br]
    Darby's father, John, was a farmer who also worked a small forge to produce nails and other ironware needed on the farm. He was brought up in the Society of Friends, or Quakers, and this community remained important throughout his personal and working life. Darby was apprenticed to Jonathan Freeth, a malt-mill maker in Birmingham, and on completion of his apprenticeship in 1699 he took up the trade himself in Bristol. Probably in 1704, he visited Holland to study the casting of brass pots and returned to Bristol with some Dutch workers, setting up a brassworks at Baptist Mills in partnership with others. He tried substituting cast iron for brass in his castings, without success at first, but in 1707 he was granted a patent, "A new way of casting iron pots and other pot-bellied ware in sand without loam or clay". However, his business associates were unwilling to risk further funds in the experiments, so he withdrew his share of the capital and moved to Coalbrookdale in Shropshire. There, iron ore, coal, water-power and transport lay close at hand. He took a lease on an old furnace and began experimenting. The shortage and expense of charcoal, and his knowledge of the use of coke in malting, may well have led him to try using coke to smelt iron ore. The furnace was brought into blast in 1709 and records show that in the same year it was regularly producing iron, using coke instead of charcoal. The process seems to have been operating successfully by 1711 in the production of cast-iron pots and kettles, with some pig-iron destined for Bristol. Darby prospered at Coalbrookdale, employing coke smelting with consistent success, and he sought to extend his activities in the neighbourhood and in other parts of the country. However, ill health prevented him from pursuing these ventures with his previous energy. Coke smelting spread slowly in England and the continent of Europe, but without Darby's technological breakthrough the ever-increasing demand for iron for structures and machines during the Industrial Revolution simply could not have been met; it was thus an essential component of the technological progress that was to come.
    Darby's eldest son, Abraham II (1711–63), entered the Coalbrookdale Company partnership in 1734 and largely assumed control of the technical side of managing the furnaces and foundry. He made a number of improvements, notably the installation of a steam engine in 1742 to pump water to an upper level in order to achieve a steady source of water-power to operate the bellows supplying the blast furnaces. When he built the Ketley and Horsehay furnaces in 1755 and 1756, these too were provided with steam engines. Abraham II's son, Abraham III (1750–89), in turn, took over the management of the Coalbrookdale works in 1768 and devoted himself to improving and extending the business. His most notable achievement was the design and construction of the famous Iron Bridge over the river Severn, the world's first iron bridge. The bridge members were cast at Coalbrookdale and the structure was erected during 1779, with a span of 100 ft (30 m) and height above the river of 40 ft (12 m). The bridge still stands, and remains a tribute to the skill and judgement of Darby and his workers.
    [br]
    Further Reading
    A.Raistrick, 1989, Dynasty of Iron Founders, 2nd edn, Ironbridge Gorge Museum Trust (the best source for the lives of the Darbys and the work of the company).
    H.R.Schubert, 1957, History of the British Iron and Steel Industry AD 430 to AD 1775, London: Routledge \& Kegan Paul.
    LRD

    Biographical history of technology > Darby, Abraham

  • 7 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 8 Cayley, Sir George

    SUBJECT AREA: Aerospace
    [br]
    b. 27 December 1773 Scarborough, England
    d. 15 December 1857 Brompton Hall, Yorkshire, England
    [br]
    English pioneer who laid down the basic principles of the aeroplane in 1799 and built a manned glider in 1853.
    [br]
    Cayley was born into a well-to-do Yorkshire family living at Brompton Hall. He was encouraged to study mathematics, navigation and mechanics, particularly by his mother. In 1792 he succeeded to the baronetcy and took over the daunting task of revitalizing the run-down family estate.
    The first aeronautical device made by Cayley was a copy of the toy helicopter invented by the Frenchmen Launoy and Bienvenu in 1784. Cayley's version, made in 1796, convinced him that a machine could "rise in the air by mechanical means", as he later wrote. He studied the aerodynamics of flight and broke away from the unsuccessful ornithopters of his predecessors. In 1799 he scratched two sketches on a silver disc: one side of the disc showed the aerodynamic force on a wing resolved into lift and drag, and on the other side he illustrated his idea for a fixed-wing aeroplane; this disc is preserved in the Science Museum in London. In 1804 he tested a small wing on the end of a whirling arm to measure its lifting power. This led to the world's first model glider, which consisted of a simple kite (the wing) mounted on a pole with an adjustable cruciform tail. A full-size glider followed in 1809 and this flew successfully unmanned. By 1809 Cayley had also investigated the lifting properties of cambered wings and produced a low-drag aerofoil section. His aim was to produce a powered aeroplane, but no suitable engines were available. Steam-engines were too heavy, but he experimented with a gunpowder motor and invented the hot-air engine in 1807. He published details of some of his aeronautical researches in 1809–10 and in 1816 he wrote a paper on airships. Then for a period of some twenty-five years he was so busy with other activities that he largely neglected his aeronautical researches. It was not until 1843, at the age of 70, that he really had time to pursue his quest for flight. The Mechanics' Magazine of 8 April 1843 published drawings of "Sir George Cayley's Aerial Carriage", which consisted of a helicopter design with four circular lifting rotors—which could be adjusted to become wings—and two pusher propellers. In 1849 he built a full-size triplane glider which lifted a boy off the ground for a brief hop. Then in 1852 he proposed a monoplane glider which could be launched from a balloon. Late in 1853 Cayley built his "new flyer", another monoplane glider, which carried his coachman as a reluctant passenger across a dale at Brompton, Cayley became involved in public affairs and was MP for Scarborough in 1832. He also took a leading part in local scientific activities and was co-founder of the British Association for the Advancement of Science in 1831 and of the Regent Street Polytechnic Institution in 1838.
    [br]
    Bibliography
    Cayley wrote a number of articles and papers, the most significant being "On aerial navigation", Nicholson's Journal of Natural Philosophy (November 1809—March 1810) (published in three numbers); and two further papers with the same title in Philosophical Magazine (1816 and 1817) (both describe semi-rigid airships).
    Further Reading
    L.Pritchard, 1961, Sir George Cayley, London (the standard work on the life of Cayley).
    C.H.Gibbs-Smith, 1962, Sir George Cayley's Aeronautics 1796–1855, London (covers his aeronautical achievements in more detail).
    —1974, "Sir George Cayley, father of aerial navigation (1773–1857)", Aeronautical Journal (Royal Aeronautical Society) (April) (an updating paper).
    JDS

    Biographical history of technology > Cayley, Sir George

См. также в других словарях:

  • Steam engine — A steam engine is a heat engine that performs mechanical work using steam as its working fluid. [ [http://www.britannica.com/EBchecked/topic/564472/steam engine steam engine Britannica Online Encyclopedia ] ] Steam engines have a long history,… …   Wikipedia

  • Newcomen steam engine — Animation of a schematic Newcomen steam engine. – Steam is shown pink and water is blue. – Valves move from open (green) to closed (red) The atmospheric engine invented by Thomas Newcomen in 1712, today referred to as a Newcomen steam engine (or… …   Wikipedia

  • Steam locomotive — A steam locomotive is a locomotive powered by steam. The term usually refers to its use on railways, but can also refer to a road locomotive such as a traction engine or steamroller.Steam locomotives dominated rail traction from the mid 19th… …   Wikipedia

  • Engine — This article is about a machine to convert energy into useful mechanical motion. For other uses of engine, see Engine (disambiguation). For other uses of motor, see Motor (disambiguation). A V6 internal combustion engine from a Mercedes car An… …   Wikipedia

  • Steam car — Stanley Steam Car (1912) White touring car (1909) …   Wikipedia

  • Steam turbine — A rotor of a modern steam turbine, used in a power plant A steam turbine is a mechanical device that extracts thermal energy from pressurized steam, and converts it into rotary motion. Its modern manifestation was invented by Sir Charles Parsons… …   Wikipedia

  • work — /werrk/, n., adj., v., worked or (Archaic except for 35, 37, 40) wrought; working. n. 1. exertion or effort directed to produce or accomplish something; labor; toil. 2. something on which exertion or labor is expended; a task or undertaking: The… …   Universalium

  • Work — /werrk/, n. Henry Clay, 1832 84, U.S. songwriter. * * * I In economics and sociology, the activities and labour necessary for the survival of society. As early as 40,000 BC, hunters worked in groups to track and kill animals, while younger or… …   Universalium

  • Diesel engine — Diesel engines in a museum Diesel generator on an oil tanker …   Wikipedia

  • Stirling engine — Alpha type Stirling engine. There are two cylinders. The expansion cylinder (red) is maintained at a high temperature while the compression cylinder (blue) is cooled. The passage between the two cylinders contains the regenerator …   Wikipedia

  • Internal combustion engine — The internal combustion engine is an engine in which the combustion of a fuel (normally a fossil fuel) occurs with an oxidizer (usually air) in a combustion chamber. In an internal combustion engine, the expansion of the high temperature and high …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»